Spin Measurements in Events with Missing Energy at the LHC

Zhenyu Han Harvard University

With Hsin-Chia Cheng, Ian-Woo Kim, Lian-Tao Wang (arXiv: 1004.xxxx)

04/22/2010 @Fermilab

Outline

- Motivation
 - Spin determination important but difficult in events with missing energy
 - Existing methods have their limitations
- Obtaining spin correlation from event reconstruction
 - Single-chain case vs double-chain case
 - Under-constrained/solvable/over-constrained system
- Conclusion and outlook

Models with missing energy signature

- SUSY (R-parity), UED (KK-parity), Little Higgs (T-parity)... Example process: $\widetilde{q} \to q \widetilde{\chi}_2^0 \to q \widetilde{\ell} \ell \to q \ell \overline{\ell} \widetilde{\chi}_1^0$
- Hard to reconstruct the kinematics due to two (or more) missing particles. q

Another example

Gauge mediation

6D UED (Burdman, Dobrescu, Ponton; Dobrescu, Kong, Mahbubani,), $B_{H}^{(1,0)}$: scalar "KK-photon"

Similar process in PQ-UED (Csaki, Heinonen, Hubisz, Shirman)

What's the theory?

- Mass determination
- Spin determination
 - Cross-sections depend on spin
 - Kinematics: pT
 - Invariant mass method
 - Event reconstruction method
 - Easier for e+e- machine (Buckley, Murayama, Klemm & Rentala)
 - Focus on LHC in this talk

Angular distribution of decay products

- Non-uniform angular distribution of decay product:
 - Polarized mother particle.
 - Helicity basis: reference direction is its own momentum
 - For fermions: chiral coupling for the decay.
- The angular distribution is a polynomial of $\cos\theta$ of order 2*Spin. θ : defined in the rest frame of mother particle

An example

- Both couplings are chiral. Neutralino is left-handed in the rest frame of squark.
- The lepton (anti-lepton) is right (left)-handed, which tends to antialign (align) with the neutralino momentum.

heta : Angle between lepton and neutralino, in rest frame of neutralino.

Relation to invariant mass

$$m_{ql}^2 = (m_{ql}^2)_{\text{max}} (1 - \cos \theta_{ql})/2$$
$$\cos \theta(\tilde{\chi}_2^0, l) = -\cos \theta_{ql}$$

The invariant mass method

- SUSY case, parton level, invariant mass of quark-lepton (Alan Barr).
 - Can't distinguish near and far lepton
 - Don't know charge of squark, but LHC is protonproton: charge asymmetry

More studies using inv. mass

- Jennifer M. Smillie, Bryan R. Webber, 2005 (UED vs SUSY), 2006
- Can Kilic, Lian-Tao Wang, Itay Yavin, 2006, 2007
- Michael Burns, Kyoungchul Kong, Konstantin T. Matchev, Myeonghun Park, 2008
- Wolfgang Ehrenfeld, Ayres Freitas, Ananda Landwehr, Daniel Wyler, 2009 (events with photons)

•

Limitation of inv. mass methods

- The invariant mass distribution of two adjacent visible particles measures the spin of the particle in between.
- Can we measure the spin of the first particle in the decay chain?
 - It needs to be polarized
 - Need to reconstruct its momentum

Chargino/neutralino production

- Similar for KK-Z/KK-W production in UED
- Significant cross-section ~1 pb for 180 GeV
 Neutralino/chargino, ~10 pb for KK-Z/KK-W. clean signature:
 lepton/tau.
- Neutrlino is polarized (in the lab frame)

Why is neutralino polarized?

- Dominated by W boson exchange if squark heavy.
- Incoming up quark left-handed, dbar right-handed.
- Neutralino left-handed if aligned with up quark, right-handed if antialigned, equal probability in *center of mass frame*.

Incoming parton momenta

Polarized neutralinos

- The whole system boosted along up quark direction, changing some right-handed neutralinos to left-handed: more left-handed neutralinos.
- Similar for KK-Z/KK-W.
- Polarized neutralino further decay to lepton+slepton through a chiral coupling: non-trivial angular distribution for near leptons.

Polarized neutralino/KK-Z decay

"near"-lepton angular distributions.

Need to reconstruct neutralino momentum. Possible? How?

Event reconstruct—general consideration

- Assuming masses are measured
- Reconstruct missing momenta from visible momenta using mass-shell constraints
- System can be under-constrained, exactly solvable or over-constrained
 - Focus on the latter two
 - See Cho, etal for under-constrained case (MT2assisted on-shell reconstruction)

Mass determination—an example (Cheng, Engelhardt, Gunion, ZH, McElrath)

- Using events with two identical decay chains each containing three visible particles.
- Can solve for the masses by combining two events. For a few hundred events in the $\widetilde{q} \to q \widetilde{\chi}_2^0 \to q \ell \ell \to q \ell \ell \widetilde{\chi}_1^0$ channel, can determine the masses to the precision of a few GeV.

Reconstruct the missing particle's momentum --single decay chain case

• 4 unknowns, 4 equations, we can solve the equations and obtain the missing particle's momentum.

$$p_1^2 = M_N^2$$

 $(p_1 + p_2)^2 = M_X^2$
 $(p_1 + p_2 + p_3)^2 = M_Y^2$
 $(p_1 + p_2 + p_3 + p_4)^2 = M_Z^2$

Chargino/neutralino in gauge mediation

- 2 leptons not enough for reconstruction. Extra photon in gauge mediation.
- Choose masses 181, 143, 97, 0 GeV for both SUSY (SPS1a) and UED (simplified by taking all couplings to be left handed)
- Neutralino 2 decays to dileptons, chargino decays to stau, same decays in UED
- Both neutralino 1 decay to photon+gravitino
- 4-fold combinatoric ambiguity (2 photons, 2 leptons) included

Event reconstruction without smearing

- Event generated with Herwig++ for 14TeV pp
- Correct combination: nsolutions = 200% nevents (quadratic equations)
- Wrong leptons (correct photons): 120%, 121% (MSSM, UED)
- Wrong photons (correct lepton): 70%, 13%
- Wrong photon and wrong lepton: 67%, 12%

pt distribution

p_T of wrong photon.

PS= phase space decays

 p_T set by 2->2 differential cross-section, insensitive to spin correlation in decays.

Polarized neutralino decay

Reconstructed distributions

Subtracted from phase space distributions

Leptons of opposite sign

Reconstructed, phase space subtracted

Experimental resolution

Leptons

$$|\eta| < 2.4, p_T > 10 \text{GeV}$$
 $\frac{\delta p_T}{p_T} = 0.008 \oplus 0.00015 p_T (\text{GeV}),$ $\delta \theta = 0.001, \delta \phi = 0.001 rad.$

Photons

$$|\eta| < 3.0, \quad p_T > 10 \text{GeV},$$
 $\frac{\delta E}{E} = \frac{0.028}{\sqrt{E}} \oplus \frac{0.12 \text{GeV}}{E} \oplus 0.0026.$
 $\delta \eta = 0.001, \quad \delta \phi = 0.003 \, rad$

Smeared distribution

Phase space subtracted

Discussion

- Distributions always contaminated by wrong solutions/combinations
- Need to know what happens in the other decay chain, if particles from the other decay contribute to wrong combinations.
- Visible momentum, masses treated as if exact, didn't use their experimental errors because the system is exactly solvable. For longer decay chains, likelihood fit using the errors is possible.

The KK-quark case?

- Squark is scalar, no spin information
- KK-quark is not polarized
- Cannot determine the spin of the first particle in this decay chain using single chain methods--Consider both decay chains

General counting of the constraints

- One chain case: 4 unknowns, *i.e.*, 4-momentum of the missing particle
 - 4 on-shell particles, 3 visible particles: solvable
 - More than 4 on-shell particles: over-constrained
- Two chain case: 8 unknowns
 - 2 extra constrains from measured missing transverse momentum
 - 6 on-shell particles needed to solve, more than 6: overconstrained.

Event reconstruction—double chain case

- Consider events with two identical decay chains (with the same masses)
 - Two visible particles per chain: 8 unknowns, 8 constraints (6 mass shell + 2 transverse momentum), solvable. (ref. ttbar resonance spin, *Bai and Han*)
 - Three visible particles per chain: 8 unknowns, 10 equations, over-constrained. Likelihood fit using experimental resolutions.

Over-constrained system

• $f_i = 0$ cannot be all satisfied (10 equations, 8 unknowns).

Likelihood fit

• A simplified version:

$$\chi^2 = \sum_{i} \left(\frac{f_i}{\delta f_i}\right)^2, \quad \delta f_i^2 = \sum_{x=p_{vis},m} \left(\frac{\partial f_i}{\partial x} \delta x\right)^2$$

- Find p_1 , p_2 that minimize χ^2
- We used a more complicated formalism where the correlations among the equations/measurements are taken into account.

Apply to sbottom/KK-bottom pair production

Jet resolution

$$\begin{aligned} |\eta| &< 3.0, \quad p_T > 100 \text{GeV}, \\ \frac{\delta E_T}{E_T} &= \begin{cases} \frac{5.6}{E_T} \oplus \frac{1.25}{\sqrt{E_T}} \oplus 0.033, & \text{for } |\eta| < 1.4, \\ \frac{4.8}{E_T} \oplus \frac{0.89}{\sqrt{E_T}} \oplus 0.043, & \text{for } 1.4 < |\eta| < 3.0, \end{cases} \\ \delta \eta &= 0.03, \quad \delta \phi = 0.02 \quad \text{for } |\eta| < 1.4, \\ \delta \eta &= 0.02, \quad \delta \phi = 0.01 \quad \text{for } 1.4 < |\eta| < 3.0. \end{aligned}$$

- Lepton resolution as before
- Mass measurements (SPS1a)

$$\delta M_N = \delta M_X = \delta M_Y = 4 GeV, \quad \delta M_Z = 6 GeV$$

Procedure

- Choose SPS1a and UED with the same spectrum.
- sbottom/KK-bottom pair production (gluino not included). Parton level, 4 leptons + 2 jet, no radiations, momentum smeared by hand.
- For each combination, minimize chi square. Choose the combination that give the smallest chi square. ~30% events get the correct solution.

Production angle depends on spin

MC

Reconstructed

Spin correlation between the two chains

- Squark is scalar, no spin correlation
- KK-quark spin correlated, correlation depends on production(glu/glu vs q/qbar) and CM energy
- Jet-jet opening angle (Boost the jets to their respective mother particle's rest frame, look at the angle between them.)

$$\frac{d\sigma}{d\theta_{open}} = 1 + D\cos\theta_{open}$$

D: constant depending on correlation.

Jet-jet opening angle

 Analogous to ttbar but more difficult: contributions from uubar/ddbar offset glu-glu; decay products massive--Need to optimize the cuts.

Conclusion

- It is often possible to reconstruct the missing particles' momenta if all masses are known—spin is determined in the same way as when all particles are visible.
- We obtain spin information that is only available after event reconstruction.
- Depending on whether the system is solvable or overconstrained, and whether we want to examine a single chain or both chains, apply different methods.

Future work

- Mass and spin measurements at the same time.
- Performance study:
 - What are the good channels?
 - Optimum cuts? Number of events, luminosity needed to distinguish spins?
- Other event topologies.